

Cálculo multivariado Curvas com gnuplot T. Praciano-Pereira

Lista numero 04
tarcisio.praciano@gmail.com
Dep. de Computação

alun@:

15 de abril de 2013	Univ. Estadual Vale do Acaraú
Documento escrito com LaTeX	sis. op. Debian/Gnu/Linux

www.multivariado.sobralmatematica.org

Se entregar em papel, por favor, prenda esta *folha de rosto* na sua solução desta lista, deixando-a em branco. Ela será usada na correção. Alternativamente, resolva a lista diretamente na página do Moodle da Sobral Matematica.

Esta lista ainda está sendo editada, quando estiver pronta esta observação irá desaparecer. Não imprima enquanto esta observação estiver presente.

Exercícios 1 Curvas com gnuplot <u>objetivo</u>: Entender como gnuplot produz curvas e aprender a colocar uma curva sobre uma superfície no espaço (e ver o gráfico).

palavras chave: Curvas, curvas no espaço, derivada implícita, gnuplot e curvas, gradiente, integral de curvas, regra da cadéia

- 1. <u>Curvas com gnuplot Sendo $z = F(x,y) = x^2 y^2$ uma função diferenciável e $\alpha(t) = (\cos(t), \sin(t))$ então</u>
 - (a) $\underline{(V)[\](F)[\]}\ F(\alpha(t))$ é um círculo no espaço 3D quanddo $t\in[-\pi,\pi]$
 - (b) $\frac{(V)[\](F)[\]}{o\ plano\ XOY}$ ($\alpha(t)$, $F(\alpha(t))$) é uma curva no espaço cuja projeção sobre
 - (c) (V)[](F)[] Com auxílio de um programa posso construir os pontos $\overline{(\alpha(t),F(\alpha(t)))}$ fazendo t variar de acordo com um passo δ e registrar esta matriz no arquivo "dados". O comando seguinte do gnuplot plot "dados" with points

irá reproduzir a curva espacial definida no item 1b desta questão.

- (d) $(V)[\](F)[\]$ Com auxílio de um programa posso construir os pontos $\overline{(\alpha(t),F(\alpha(t)))}$ fazendo t variar de acordo com um passo δ e registrar esta matriz no arquivo "dados". O comando seguinte do gnuplot irá reproduzir a curva espacial definida no item 1b desta questão:
 - splot "dados" with points
- (e) $(V)[\](F)[\]$ Com auxílio de um programa posso construir os pontos $\overline{(\alpha(t),F(\alpha(t)))}$ fazendo t variar de acordo com um passo δ e registrar esta matriz no arquivo "dados". O comando seguinte do gnuplot irá reproduzir a curva espacial definida no item 1b desta questão desenhada em cima da variedade bidimensional graf(F(x,y)). $splot\ F(x,y)$, "dados" with points

2. regra da cadeia

Considere z = F(x,y) e $\alpha(t) = (x(t),y(t))$ uma curva parametrizada no intervalo I

(a) $(V)[\](F)[\]\gamma(t)=F(\alpha(t))$ é uma curva plana como sugere a sucessão de comandos do gnuplot

```
\begin{aligned} &\text{pow}(x,n) = x**n; \\ &F(x,y) = \text{pow}(x,2) - \text{pow}(y,2); \\ &x(t) = \cos(t); \ y(t) = \sin(t); \\ &\text{gama}(t) = F(x(t),y(t)); \\ &\text{print "(", 3, ",", gama(3),")", ", ", "(", 4, ",", gama(4),")", "...} \end{aligned}
```

(b) (V)[](F)[] Se α for uma curva plana e $g(t) = F(\alpha(t))$ então

$$\gamma(t) = (\alpha(t), g(t))$$

é uma curva no espaço 3D e os comandos seguintes do gnuplot mostram alguns vetores tangentes ao gráfico da curva γ .

```
pow(x,n) = x**n;
F(x,y) = pow(x,2) - pow(y,2);
x(t) = cos(t); y(t) = sin(t);
gama(t) = F(x(t),y(t));
a = -3;
set arrow from 0,0 to x(a), y(a);
b = -3;
set arrow from 0,0 to x(b), y(b);
splot F(x,y);
```

(c) (V)[](F)[] Se α for uma curva plana e $g(t) = F(\alpha(t))$ então

$$\gamma(t) = (\alpha(t), q(t))$$

é uma curva no espaço 3D e os comandos seguintes do gnuplot mostram alguns vetores tangentes ao gráfico da curva γ .

(d) $\underline{(V)[\](F)[\]}$ Se α for uma curva plana e $g(t) = F(\alpha(t))$ então $\gamma(t) = \underline{(\alpha(t), g(t))}$ é uma curva no espaço 3D.

Suponha que com um programa você gerou um arquivo chamado "dados", contendo os pontos $\gamma(t) = (\alpha(t), g(t))$ com uma certa frequência definida por um passo δ . Os comandos seguintes do gnuplot mostram um vetor tangente ao gráfico da curva γ .

```
pow(x,n) = x**n;
F(x,y) = pow(x,2) - pow(y,2);
D_xF(x,y) = 2*x; D_yF(x,y) = 2*y;
x(t) = cos(t); y(t) = sin(t);
z(t) = F(x(t),y(t));
dx(t) = -sin(t); dy(t) = cos(t);
g(t) = F(x(t),y(t));
t1 = -3;
a1 = x(t1); b1 = y(t1); z1 = g(t1);
p1 = dx(t1); q1 = dy(t1);
r1 = D_xF(a1,b1)*p1 + D_yF(a1,b1)*q1;
set arrow from a1, b1, z1 to (a1 +p1), (b1+q1), (z1+r1) head splot F(x,y);
pause -2 "Aperte enter para terminar ";
```

(e) (V)[](F)[] Se α for uma curva plana e $g(t) = F(\alpha(t))$ então $\gamma(t) = \overline{(\alpha(t), g(t))}$ é uma curva no espaço 3D.

Suponha que com um programa você gerou um arquivo chamado "dados", contendo os pontos $\gamma(t) = (\alpha(t), g(t))$ com uma certa frequência definida por um passo δ . Os comandos seguintes do gnuplot mostram um vetor tangente ao gráfico da curva γ .

```
pow(x,n) = x**n;
F(x,y) = pow(x,2) - pow(y,2);
D_xF(x,y) = 2*x; D_yF(x,y) = - 2*y;
x(t) = cos(t); y(t) = sin(t);
```

```
z(t) = F(x(t),y(t));
dx(t) = -\sin(t); dy(t) = \cos(t);
g(t) = F(x(t),y(t));
t1 = -3;
a1 = x(t1); b1 = y(t1); z1 = g(t1);
p1 = dx(t1); q1 = dy(t1);
r1 = D_xF(a1,b1)*p1 + D_yF(a1,b1)*q1;
set arrow from a1, b1, z1 to (a1 +p1) , (b1+q1), (z1+r1) head splot F(x,y);
pause -2 "Aperte enter para terminar ";
```

3. Curva no espaço

Se $z = F(x, y) = x^2 - 3xy + y^3$ e $t \mapsto \alpha(t)$ for uma curva plana então

- (a) (V)[](F)[] $g(t) = F(\alpha(t))$ é uma função univariada.
- (b) $\underline{(V)[\](F)[\]}\ t\mapsto \gamma(t)=(\alpha(t),g(t))$ é uma variedade de dimensão 1 imersa na variedade tridimensional \mathbf{R}^3 cuja projeção no plano XOY é a curva

$$t \mapsto \alpha(t);$$

- (c) (V)[](F)[] A derivada da curva γ é a curva $t \mapsto (\alpha'(t), g'(t))$.
- (d) $\underline{(V)[\](F)[\]}$ Dado um valor para t=a então o vetor $(\alpha'(a),g'(a))$ é paralelo a um vetor tangente ao gráfico de γ .
- (e) $(V)[\](F)[\]$ Dado um valor para t=a então o vetor

$$(\alpha(a), g(a)) + (\alpha'(a), g'(a))$$

é tangente ao gráfico de γ no ponto $(\alpha(a), g(a))$.

4. Integral de curvas

Sendo $z=F(x,y)=x^2-2xy+y^2$ e $t\mapsto \alpha(t)=(x(t),y(t))$ em que x,y são duas funções diferenciáveis, então

- (a) (V)[](F)[] g(t) = F(x(t), y(t)) é uma função univariada que é diferenciável.
- (b) (V)[](F)[] Nas condições do item anterior,

$$g'(t) = F_x(x(t), y(t))x'(t) + F_y(x(t), y(t))y'(t);$$

- $(c) \ \ (V)[\](F)[\]\ g'\ definida\ no\ item\ anterior\ \acute{e}\ uma\ funç\~ao\ univariada.$
- $(d) \ \ \underline{(V)[\](F)[\]} \ Pelo \ Teorema \ Fundamental \ do \ C\'alculo$

$$\int_{a}^{b} g'(t)dt = g(b) - g(a);$$

(e)
$$(V)[](F)[]$$
 Suponha que $\alpha(t) = (\cos(t), \sin(t))$, então $\int_{0}^{2\pi} g'(t)dt = 0$

5. integral de curvas

Sendo $z = F(x,y) = x^2 - 2xy + y^2$ e $t \mapsto \alpha(t) = (x(t),y(t))$ em que x,y são duas funções diferenciáveis, então

- (a) $\underline{(V)[\](F)[\]}$ Então $t\mapsto \gamma(t)=(\alpha(t),F(x(t),y(t))$ é uma função univariada do tipo "função vetorial de variável real", quer dizer, transforma um número num vetor do \mathbf{R}^3 . $graf(\gamma)$ é uma variedade de dimensão 1.
- (b) (V)[](F)[] Podemos calcular a integral $\int_a^b \gamma(t)dt$ em que γ está definida no item 5a sendo o resultado o vetor

$$\left(\int_{a}^{b} x(t)dt, \int_{a}^{b} y(t)dt, \int_{a}^{b} F(x(t), y(t))dt\right)$$

- (c) $(V)[](F)[] \int_{-\pi}^{\pi} \gamma(t)dt$ é um número real, em que γ está definida no 5a.
- (d) (V)[](F)[]

$$\int_{-\pi}^{\pi} \gamma(t)dt = \left(\int_{-\pi}^{\pi} x(t)dt, \int_{-\pi}^{\pi} y(t)dt, \int_{-\pi}^{\pi} F(x(t), y(t))dt\right) = (0, 0, 2\pi)$$

 \acute{e} um vetor do ${\bf R}^3$.

(e) (V)[](F)[] A derivada $\gamma'(t)$ existe e vale

$$(\alpha'(t), F_x(x(t), y(t))x'(t) + F_y(x(t), y(t))y'(t));$$

 γ está definida no item 5a.

6. integral de curvas

Sendo $z=F(x,y)=x^2-2xy+y^2$ e $t\mapsto \alpha(t)=(x(t),y(t))$ em que x,y são duas funções diferenciáveis, então

- (a) (V)[](F)[][a,b] $\ni t \mapsto (F_x(\alpha(t)), F_y(\alpha(t)))$ é um curva plana.
- (b) $(V)[](F)[][a,b] \ni t \mapsto (F_x(\alpha(t)), F_y(\alpha(t))) \cdot \alpha'(t) \text{ \'e uma função univariada. O produto indicado com o símbolo "." \'e o produto escalar.}$
- (c) $\underline{(V)[\](F)[\]}[a,b] \ni t \mapsto (F_x(\alpha(t)),F_y(\alpha(t))) \times \alpha'(t)$ é uma curva no espaço \mathbf{R}^3 . O produto indicado com o símbolo "×" é o produto vetorial.

- (d) $\underline{(V)[\](F)[\]}$ Se $t\mapsto \gamma(t)=(x(t),y(t))$ for uma curva diferenciável $\underline{ent\~ao}\ [a,b]\ni t\mapsto \gamma(t)\cdot \gamma'(t)$ é uma função univariada. O produto indicado com o símbolo "." é o produto escalar.
- (e) (V)[](F)[] A integral $\int_a^b \gamma(t) \cdot \gamma'(t) dt$ é um número e se

$$\gamma(t) = (\cos(t), \sin(t))$$

 $ent ilde{a}o$

$$\int_{a}^{b} \gamma(t) \cdot \gamma'(t) dt = 0;$$

O produto indicado com o símbolo "." é o produto escalar.

7. Curva de nível

Sendo z = F(x, y) uma função diferenciável e $t \mapsto \alpha(t) = (x(t), y(t))$ em que x, y são duas funções diferenciáveis, então

- (a) (V)[](F)[]F(x,y) = c, em que c é uma constante dada, pelo Teorema da Função Implícita, é uma variedade de dimensão 1 e pode ter uma curva por solução, chamada de "curva de nível c de F".
- (b) $(V)[\](F)[\]$ A curva definida no item 7a é uma curva contida no $\overline{plano\ XOY}$, no domínio de F.
- (c) $\underline{(V)[\](F)[\]}$ Calculando a derivada implícita de F(x,y)=c podemos concluir que o gradiente de F é perpendicular a qualquer curva de nível.
- (d) $\underline{(V)[\](F)[\]}$ Suponha que $[a,b] \ni t \mapsto \gamma(t)$ seja uma curva diferenciável do plano XOY então $[a,b] \ni t \mapsto (\gamma(t), F(\gamma(t)))$ é uma curva diferenciável do espaço \mathbf{R}^3 colocada sobre o gráfico de F.
- (e) $\underline{(V)[\](F)[\]}$ É possível calcular a integral $\int_a^b (\gamma(t), F(\gamma(t))) dt$ e o resultado é um número real.
- 8. Curvas com gnuplot O símbolo ∇ representa o gradiente. Sendo

$$z = F(x, y)$$

uma função diferenciável e

$$t \mapsto \alpha(t) = (x(t), y(t))$$

em que x, y são duas funções diferenciáveis, então

(a) (V)[](F)[]
$$\frac{d}{dt}F(\alpha(t)) = \nabla F(\alpha(t))\frac{d\alpha(t)}{dt}$$

- (b) $\frac{(V)[\](F)[\]}{est\'a\ definida\ a\ multiplicaç\~ao\ entre\ dois\ vetores.}$
- (c) (V)[](F)[] A derivada implícita de $G(t) = F(\alpha(t))$ mostra que podemos dar um sentido ao produto de vetores que aparece no item 8b como um produto escalar $\nabla F(\alpha(t)) \cdot \frac{d\alpha(t)}{dt}$
- $(d) \ \ (V)[\](F)[\]\ A\ derivação\ implicita\ usada\ no\ item\ 8c\ mostra\ que$

$$\nabla F(\alpha(t)) \cdot \frac{d\alpha(t)}{dt}$$

é um diferencial total (uma derivada) e neste caso o Teorema Fundamental do Cálculo nos garante que

$$\int_{a}^{b} \nabla F(\alpha(t)) \cdot \frac{d\alpha(t)}{dt} = F(x(a), y(a)) - F(x(b), y(b))$$

 $(e) \ (V)[\](F)[\]\ A\ derivação\ implicita\ usada\ no\ item\ 8c\ mostra\ que$

$$F(\alpha(t)) \cdot \frac{d\alpha(t)}{dt}$$

é um diferencial total (uma derivada) e neste caso o Teorema Fundamental do Cálculo nos garante que

$$\int_{a}^{b} \nabla F(\alpha(t)) \cdot \frac{d\alpha(t)}{dt} = F(x(b), y(b)) - F(x(a), y(a))$$

9. Curvas com gnuplot

Sendo w = F(x, y, z) uma função diferenciável e

$$t \mapsto (\alpha(t) = (x(t), y(t), z(t))$$

em que x, y, z são três funções diferenciáveis, então

- (a) (V)[]/(F)[] A derivada implicita de F(x,y,z) = d em que d é uma constante, mostra que ∇F é perpendicular às superfícies de nível F(x,y,z) = d quando estas existirem.
- (b) $\underline{(V)[\](F)[\]}$ A função $[a,b]\ni t\mapsto (\alpha(t),F(\alpha(t)))$ é uma curva diferenciável no espaço 4D
- $(c) \ \underline{(V)[\](F)[\]} \ \underline{\frac{d}{dt}} \ (\alpha(t), F(\alpha(t)) = (\alpha'(t), \nabla F(\alpha(t)) \cdot \alpha'(t))$
- (d) Vetor normal a uma superfície (V)[](F)[] Parte do cálculo no item 9c sugere o cálculo de um coeficiente de variação que fica representado pela expressão perfeitamente calculável $\nabla F(\alpha(t)) \cdot \gamma(t)$. Esta expressão será otimizada quando $\gamma(t)$ tiver a mesma direção do gradiente.

 $(e) \ \underline{(V)[\](F)[\]} \ Suponha \ que \ seja \ possível \ definir$

$$[a,b] \ni t \mapsto \gamma(t)$$

correspondendo a cada valor de t
 um vetor unitário na direção de $\nabla F.$ Então a integral

$$\int_{a}^{n} \nabla F(\alpha(t)) \cdot \gamma(t) dt$$

está bem definida e é um número real.